基本排序算法的重新解读

我们在上大学的时候会接触很多基本的排序算法,到了工作后其实我们很多时候用的都是语言自带的一些排序方法,所以就会有些生疏,这次重看《数据结构与算法之美》,对这些基本的排序算法又有了一点进一步的理解,索性就重新回顾一遍这些基本的排序算法,并从几个新的角度去理解和使用它们,本文所有的排序都是从小到大排序,并且是从王争老师的课程中提取了一点关于基本排序的知识按照自己的思维方式重新组织并实现了一次,加入了一点自己的联想,比如计数排序与前缀和的关系,从一个新的角度理解归并排序与快速排序的区别,但还是强烈建议大家去购买王争老师的正版课程,真正的由浅入深,这样每个人的知识树不一样,构建起来的知识体系也不同。

如何分析一个排序算法

排序算法的执行效率

对于排序算法执行效率的分析,我们一般会从这几个方面来衡量:

  1. 最好情况、最坏情况、平均情况时间复杂度我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。为什么要区分这三种时间复杂度呢?第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。
  2. 时间复杂度的系数、常数 、低阶我们知道,时间复杂度反映的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。
  3. 比较次数和交换(或移动)次数。基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。

排序算法的内存消耗

算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。

排序算法的稳定性

仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。我通过一个例子来解释一下。比如我们有一组数据 2,9,3,4,8,3,按照大小排序之后就是 2,3,3,4,8,9。这组数据里有两个 3。经过某种排序算法排序之后,如果两个 3 的前后顺序没有改变,那我们就把这种排序算法叫作稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作不稳定的排序算法。

基于比较的排序算法列举

冒泡排序

算法实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
const bubbleSort = (nums) => {
for (let i = 0; i < nums.length; i++) {
let needToSort = true;
for (let j = 0; j < nums.length - i - 1; j++) {
if (nums[j] > nums[j + 1]) {
let temp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = temp;
needToSort = false;
}
}
if (needToSort) {
break;
}
}
return nums;
}

算法分析

冒泡排序算法的思想比较简单,我们可以想象一下,把数组竖起来看,头在下,尾在上。

整个数组可以分成未排序区间和排序区间,未排序区间在前,排序区间在后,一开始排序区间是空的,每完成一次对排序区间完整的比较和交换,就有一个未排序区间的最大值被加入到排序区间的头部。

就是从头开始依次比较相邻的两个数据的大小,如果前面的大于后面的数,就交换两个位置,这样每次交换的结果就能保证后面的数字比前面的大,最终比较到最后一位的时候就可以保证最后一位已经是最大的了

因为已经保证了最后一位已经是最大的了,所以下一次比较的时候就不需要再比较最后一位了,依次类推,直到最后一次比较只需要比较前两位就好。

又因为整个过程像是一个气泡上升的过程,所以叫做冒泡排序。

上面算法实现做了一点小优化,如果某次对未排序区间的比较没有做过任何一次交换,说明未排序区间其实已经是有序的了,就可以结束冒泡排序了。

思考

冒泡排序是原地排序算法吗?

冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是一个原地排序算法

冒泡排序是稳定的排序算法吗?

在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法

冒泡排序的时间复杂度是多少?

最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以最好情况时间复杂度是 O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行 n 次冒泡操作,所以最坏情况时间复杂度为 O(n2)。

平均时间复杂度就是加权平均期望时间复杂度,分析的时候要结合概率论的知识。对于包含 n 个数据的数组,这 n 个数据就有 n! 种排列方式。不同的排列方式,冒泡排序执行的时间肯定是不同的。这里还有一种思路,通过“有序度”和“逆序度”这两个概念来进行分析。有序度是数组中具有有序关系的元素对的个数。

有序元素对:a[i] <= a[j], 如果i < j。

对于一个倒序排列的数组,比如 6,5,4,3,2,1,有序度是 0;对于一个完全有序的数组,比如 1,2,3,4,5,6,有序度就是 n*(n-1)/2,也就是 15。我们把这种完全有序的数组的有序度叫作满有序度。逆序度的定义正好跟有序度相反

我们还可以得到一个公式:逆序度 = 满有序度 - 有序度

对于包含 n 个数据的数组进行冒泡排序,平均交换次数是多少呢?最坏情况下,初始状态的有序度是 0,所以要进行 n*(n-1)/2 次交换。最好情况下,初始状态的有序度是 n*(n-1)/2,就不需要进行交换。我们可以取个中间值 n*(n-1)/4,来表示初始有序度既不是很高也不是很低的平均情况。换句话说,平均情况下,需要 n*(n-1)/4 次交换操作,比较操作肯定要比交换操作多,而复杂度的上限是 O(n2),所以平均情况下的时间复杂度就是 O(n2)。

插入排序

算法实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
const insertionSort = (nums) => {
for(let i = 1; i < nums.length; i++) {
let value = nums[i];
let j = i - 1
for (; j >= 0; j--) {
if (nums[j] > value) {
nums[j + 1] = nums[j];
} else {
break;
}
}
nums[j + 1] = value;
}
return nums;
}

算法分析

插入排序的思路也比较容易理解,和冒泡排序一样,也分为排序区间和未排序区间,只不过插入排序的排序区间在前。

核心思路就是每次从未排序区间中拿出第一个来,假设为a,从后向前依次与排序区间内的值(假设为b)比较,a < b,说明a应该插入到b前面,就把b向后挪一位,知道找到第一个a >b 的位置,不再挪动位置,因为a就应该在这里了,所以将第一个小于a的位置的数据置为a。

这样说起来可能有点晦涩,大家可以想象一下我们平时打牌,手里的牌就是排好序的,牌堆里就是没有排好序的,每次我们摸到一张牌,就开始从我们手牌从后向前找,一直找到第一个小于摸到的牌的位置,把这张牌插入到这里,后面的牌就依次向后挪一个位置。

插入排序模仿的就是这个过程,不过是在我们从后向前找的过程中预先把大于摸到的牌值的牌向后挪一个位置。

思考

插入排序是原地排序算法吗?

从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),也就是说,这是一个原地排序算法。

插入排序是稳定的排序算法吗?

在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。

插入排序的时间复杂度是多少?

如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为 O(n)。注意,这里是从尾到头遍历已经有序的数据。如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为 O(n2)。还记得我们在数组中插入一个数据的平均时间复杂度是多少吗?没错,是 O(n)。所以,对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行 n 次插入操作,所以平均时间复杂度为 O(n2)。

选择排序

算法实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
const selectionSort = (nums) => {
for(let i = 0; i < nums.length; i++) {
let min = nums[i], minPos = i;
for (let j = i + 1; j < nums.length; j++) {
if (nums[j] < min) {
min = nums[j];
minPos = j;
}
}
if (minPos !== i) {
let temp = nums[i];
nums[i] = nums[minPos];
nums[minPos] = temp;
}
}
return nums;
}

算法分析

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。

也就是说插入排序是每次从未排序区间拿出第一个,然后再排序区间找到它的合适位置,而选择排序是每次从未排序区间找到最小的那个,它的位置就应该是排序区间后紧跟着的那个位置。

思考

插入排序是原地排序算法吗?

从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),也就是说,这是一个原地排序算法。

插入排序是稳定的排序算法吗?

选择排序是一种不稳定的排序算法。可以看出来,选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。

插入排序的时间复杂度是多少?

选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为 O(n2)。

归并排序

算法实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
const merge_sort = (nums) => {
merge_sort_c(nums, 0, nums.length - 1);
}

const merge_sort_c = (nums, p, r) => {
if (p >= r) {
return
}
let q = Math.floor((p + r) / 2);
merge_sort_c(nums, p, q);
merge_sort_c(nums, q + 1, r);
merge(nums, p, q, r);
}

const merge = (nums, p, q, r) => {
let i = p, j = q + 1, k = 0;
let temp = [];
while(i <= q && j <= r) {
if (nums[i] <= nums[j]) {
temp[k++] = nums[i++]
} else {
temp[k++] = nums[j++]
}
}
let start = i, end = q;
if (j <= r) {
start = j;
end = r;
}
while(start <= end) {
temp[k++] = nums[start++]
}
for (let m = 0; m <= r - p; m++) {
nums[p + m] = temp[m];
}
}

算法分析

归并排序的核心思想还是蛮简单的。如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。

归并排序使用的就是分治思想。分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。小的子问题解决了,大问题也就解决了。从我刚才的描述,你有没有感觉到,分治思想跟我们前面讲的递归思想很像。是的,分治算法一般都是用递归来实现的。分治是一种解决问题的处理思想,递归是一种编程技巧,这两者并不冲突。

写递归代码的技巧就是,分析得出递推公式,然后找到终止条件,最后将递推公式翻译成递归代码。所以,要想写出归并排序的代码,我们先写出归并排序的递推公式。

merge_sort(p…r) 表示,给下标从 p 到 r 之间的数组排序。我们将这个排序问题转化为了两个子问题,merge_sort(p…q) 和 merge_sort(q+1…r),其中下标 q 等于 p 和 r 的中间位置,也就是 (p+r)/2。当下标从 p 到 q 和从 q+1 到 r 这两个子数组都排好序之后,我们再将两个有序的子数组合并在一起,这样下标从 p 到 r 之间的数据就也排好序了。

思考

归并排序是稳定的排序算法吗?

结合我前面画的那张图和归并排序的伪代码,你应该能发现,归并排序稳不稳定关键要看 merge() 函数,也就是两个有序子数组合并成一个有序数组的那部分代码。在合并的过程中,如果 A[p…q]和 A[q+1…r]之间有值相同的元素,那我们可以像伪代码中那样,先把 A[p…q]中的元素放入 tmp 数组。这样就保证了值相同的元素,在合并前后的先后顺序不变。所以,归并排序是一个稳定的排序算法。

归并排序的时间复杂度是多少?

归并排序涉及递归,时间复杂度的分析稍微有点复杂。我们正好借此机会来学习一下,如何分析递归代码的时间复杂度。在递归那一节我们讲过,递归的适用场景是,一个问题 a 可以分解为多个子问题 b、c,那求解问题 a 就可以分解为求解问题 b、c。问题 b、c 解决之后,我们再把 b、c 的结果合并成 a 的结果。如果我们定义求解问题 a 的时间是 T(a),求解问题 b、c 的时间分别是 T(b) 和 T( c),那我们就可以得到这样的递推关系式:T(a) = T(b) + T© + K其中 K 等于将两个子问题 b、c 的结果合并成问题 a 的结果所消耗的时间。从刚刚的分析,我们可以得到一个重要的结论:不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式。套用这个公式,我们来分析一下归并排序的时间复杂度。我们假设对 n 个元素进行归并排序需要的时间是 T(n),那分解成两个子数组排序的时间都是 T(n/2)。我们知道,merge() 函数合并两个有序子数组的时间复杂度是 O(n)。所以,套用前面的公式,归并排序的时间复杂度的计算公式就是:T(1) = C; n=1时,只需要常量级的执行时间,所以表示为C。T(n) = 2T(n/2) + n; n>1通过这个公式,如何来求解 T(n) 呢?还不够直观?那我们再进一步分解一下计算过程。T(n) = 2T(n/2) + n = 2*(2T(n/4) + n/2) + n = 4T(n/4) + 2n = 4(2T(n/8) + n/4) + 2n = 8T(n/8) + 3n = 8*(2T(n/16) + n/8) + 3n = 16T(n/16) + 4n … = 2^k,通过这样一步一步分解推导,我们可以得到 T(n) = 2kT(n/2k)+kn。当 T(n/2^k)=T(1) 时,也就是 n/2^k=1,我们得到 k=log2n 。我们将 k 值代入上面的公式,得到 T(n)=Cn+nlog2n 。如果我们用大 O 标记法来表示的话,T(n) 就等于 O(nlogn)。所以归并排序的时间复杂度是 O(nlogn)。从我们的原理分析和伪代码可以看出,归并排序的执行效率与要排序的原始数组的有序程度无关,所以其时间复杂度是非常稳定的,不管是最好情况、最坏情况,还是平均情况,时间复杂度都是 O(nlogn)。

归并排序的空间复杂度是多少?

归并排序的时间复杂度任何情况下都是 O(nlogn),看起来非常优秀。(待会儿你会发现,即便是快速排序,最坏情况下,时间复杂度也是 O(n2)。)但是,归并排序并没有像快排那样,应用广泛,这是为什么呢?因为它有一个致命的“弱点”,那就是归并排序不是原地排序算法。这是因为归并排序的合并函数,在合并两个有序数组为一个有序数组时,需要借助额外的存储空间。这一点你应该很容易理解。那我现在问你,归并排序的空间复杂度到底是多少呢?是 O(n),还是 O(nlogn),应该如何分析呢?如果我们继续按照分析递归时间复杂度的方法,通过递推公式来求解,那整个归并过程需要的空间复杂度就是 O(nlogn)。不过,类似分析时间复杂度那样来分析空间复杂度,这个思路对吗?实际上,递归代码的空间复杂度并不能像时间复杂度那样累加。刚刚我们忘记了最重要的一点,那就是,尽管每次合并操作都需要申请额外的内存空间,但在合并完成之后,临时开辟的内存空间就被释放掉了。在任意时刻,CPU 只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)。

快速排序

算法实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
const quick_sort = (nums) => {
quick_sort_c(nums, 0, nums.length - 1);
}

const quick_sort_c = (nums, p, r) => {
if (p >= r) {
return;
}
let q = partition(nums, p ,r);
quick_sort_c(nums, p, q - 1);
quick_sort_c(nums, q + 1, r);
}

const partition = (nums, p , r) => {
let pivot = nums[r];
let i = p;
for(let j = p; j < r; j++) {
if (nums[j] < pivot) {
swap(nums, i++, j);
}
}
swap(nums, i, r);
return i;
}

const swap = (nums, i, j) => {
let tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}

算法分析

快排的思想是这样的:如果要排序数组中下标从 p 到 r 之间的一组数据,我们选择 p 到 r 之间的任意一个数据作为 pivot(分区点)。我们遍历 p 到 r 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。经过这一步骤之后,数组 p 到 r 之间的数据就被分成了三个部分,前面 p 到 q-1 之间都是小于 pivot 的,中间是 pivot,后面的 q+1 到 r 之间是大于 pivot 的。

根据分治、递归的处理思想,我们可以用递归排序下标从 p 到 q-1 之间的数据和下标从 q+1 到 r 之间的数据,直到区间缩小为 1,就说明所有的数据都有序了。如果我们用递推公式来将上面的过程写出来的话,就是这样:

递推公式:quick_sort(p…r) = quick_sort(p…q-1) + quick_sort(q+1… r)

终止条件:p >= r

1
2
3
4
5
6
7
8
9
10
11
12
13

// 快速排序,A是数组,n表示数组的大小
quick_sort(A, n) {
quick_sort_c(A, 0, n-1)
}
// 快速排序递归函数,p,r为下标
quick_sort_c(A, p, r) {
if p >= r then return

q = partition(A, p, r) // 获取分区点
quick_sort_c(A, p, q-1)
quick_sort_c(A, q+1, r)
}

归并排序中有一个 merge() 合并函数,我们这里有一个 partition() 分区函数。partition() 分区函数实际上我们前面已经讲过了,就是随机选择一个元素作为 pivot(一般情况下,可以选择 p 到 r 区间的最后一个元素),然后对 A[p…r]分区,函数返回 pivot 的下标。

如果我们不考虑空间消耗的话,partition() 分区函数可以写得非常简单。我们申请两个临时数组 X 和 Y,遍历 A[p…r],将小于 pivot 的元素都拷贝到临时数组 X,将大于 pivot 的元素都拷贝到临时数组 Y,最后再将数组 X 和数组 Y 中数据顺序拷贝到 A[p…r]。

但是,如果按照这种思路实现的话,partition() 函数就需要很多额外的内存空间,所以快排就不是原地排序算法了。如果我们希望快排是原地排序算法,那它的空间复杂度得是 O(1),那 partition() 分区函数就不能占用太多额外的内存空间,我们就需要在 A[p…r]的原地完成分区操作。

原地分区函数的实现思路非常巧妙,我写成了伪代码,我们一起来看一下。

1
2
3
4
5
6
7
8
9
10
11
12
13

partition(A, p, r) {
pivot := A[r]
i := p
for j := p to r-1 do {
if A[j] < pivot {
swap A[i] with A[j]
i := i+1
}
}
swap A[i] with A[r]
return i

这里的处理有点类似选择排序。我们通过游标 i 把 A[p…r-1]分成两部分。A[p…i-1]的元素都是小于 pivot 的,我们暂且叫它“已处理区间”,A[i…r-1]是“未处理区间”。我们每次都从未处理的区间 A[i…r-1]中取一个元素 A[j],与 pivot 对比,如果小于 pivot,则将其加入到已处理区间的尾部,也就是 A[i]的位置。

思考

因为分区的过程涉及交换操作,如果数组中有两个相同的元素,比如序列 6,8,7,6,3,5,9,4,在经过第一次分区操作之后,两个 6 的相对先后顺序就会改变。所以,快速排序并不是一个稳定的排序算法

快排也是用递归来实现的。对于递归代码的时间复杂度,我前面总结的公式,这里也还是适用的。如果每次分区操作,都能正好把数组分成大小接近相等的两个小区间,那快排的时间复杂度递推求解公式跟归并是相同的。所以,快排的时间复杂度也是 O(nlogn)

但是,公式成立的前提是每次分区操作,我们选择的 pivot 都很合适,正好能将大区间对等地一分为二。但实际上这种情况是很难实现的。

归并排序与快速排序的区别:

归并排序和快速排序是两种稍微复杂的排序算法,它们用的都是分治的思想,代码都通过递归来实现,过程非常相似。理解归并排序的重点是理解递推公式和 merge() 合并函数。同理,理解快排的重点也是理解递推公式,还有 partition() 分区函数。

归并排序算法是一种在任何情况下时间复杂度都比较稳定的排序算法,这也使它存在致命的缺点,即归并排序不是原地排序算法,空间复杂度比较高,是 O(n)。正因为此,它也没有快排应用广泛。

快速排序算法虽然最坏情况下的时间复杂度是 O(n2),但是平均情况下时间复杂度都是 O(nlogn)。不仅如此,快速排序算法时间复杂度退化到 O(n2) 的概率非常小,我们可以通过合理地选择 pivot 来避免这种情况。

我们通过代码也可以看出,归并排序最终的排序是在递归函数最后merge操作中进行的,而快排是递归函数最开始通过partition函数中执行的,也就是说归并排序是在递归回归的过程中完成的排序,是从下到上的,而快排是在递归下递的过程中完成的排序,是从上到下的

其他基本排序简介

桶排序

首先,我们来看桶排序。桶排序,顾名思义,会用到“桶”,核心思想是将要排序的数据分到几个有序的桶里,每个桶里的数据再单独进行排序。桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了

桶排序的时间复杂度为什么是 O(n) 呢?我们一块儿来分析一下。如果要排序的数据有 n 个,我们把它们均匀地划分到 m 个桶内,每个桶里就有 k=n/m 个元素。每个桶内部使用快速排序,时间复杂度为 O(k * logk)。m 个桶排序的时间复杂度就是 O(m * k * logk),因为 k=n/m,所以整个桶排序的时间复杂度就是 O(n*log(n/m))。当桶的个数 m 接近数据个数 n 时,log(n/m) 就是一个非常小的常量,这个时候桶排序的时间复杂度接近 O(n)。

桶排序看起来很优秀,那它是不是可以替代我们之前讲的排序算法呢?

答案当然是否定的。实际上,桶排序对要排序数据的要求是非常苛刻的。首先,要排序的数据需要很容易就能划分成 m 个桶,并且,桶与桶之间有着天然的大小顺序。这样每个桶内的数据都排序完之后,桶与桶之间的数据不需要再进行排序。其次,数据在各个桶之间的分布是比较均匀的。如果数据经过桶的划分之后,有些桶里的数据非常多,有些非常少,很不平均,那桶内数据排序的时间复杂度就不是常量级了。在极端情况下,如果数据都被划分到一个桶里,那就退化为 O(nlogn) 的排序算法了。

桶排序比较适合用在外部排序中。所谓的外部排序就是数据存储在外部磁盘中,数据量比较大,内存有限,无法将数据全部加载到内存中。

计数排序

计数排序其实是桶排序的一种特殊情况。当要排序的 n 个数据,所处的范围并不大的时候,比如最大值是 k,我们就可以把数据划分成 k 个桶。每个桶内的数据值都是相同的,省掉了桶内排序的时间。

我们都经历过高考,高考查分数系统你还记得吗?我们查分数的时候,系统会显示我们的成绩以及所在省的排名。如果你所在的省有 50 万考生,如何通过成绩快速排序得出名次呢?考生的满分是 900 分,最小是 0 分,这个数据的范围很小,所以我们可以分成 901 个桶,对应分数从 0 分到 900 分。

根据考生的成绩,我们将这 50 万考生划分到这 901 个桶里。桶内的数据都是分数相同的考生,所以并不需要再进行排序。我们只需要依次扫描每个桶,将桶内的考生依次输出到一个数组中,就实现了 50 万考生的排序。因为只涉及扫描遍历操作,所以时间复杂度是 O(n)。

计数排序的算法思想就是这么简单,跟桶排序非常类似,只是桶的大小粒度不一样。不过,为什么这个排序算法叫“计数”排序呢?“计数”的含义来自哪里呢?

想弄明白这个问题,我们就要来看计数排序算法的实现方法。我还拿考生那个例子来解释。为了方便说明,我对数据规模做了简化。假设只有 8 个考生,分数在 0 到 5 分之间。这 8 个考生的成绩我们放在一个数组 A[8]中,它们分别是:2,5,3,0,2,3,0,3。考生的成绩从 0 到 5 分,我们使用大小为 6 的数组 C[6]表示桶,其中下标对应分数。不过,C[6]内存储的并不是考生,而是对应的考生个数。像我刚刚举的那个例子,我们只需要遍历一遍考生分数,就可以得到 C[6]的值。

如果大家对于前缀和有印象,那么就很好理解这个基数排序了,其原理与前缀和非常的相似。

这里我们举个leetcode上的实际例子

给定一个包含红色、白色和蓝色,一共 n 个元素的数组,对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。

此题中,我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/**
* @param {number[]} nums
* @return {void} Do not return anything, modify nums in-place instead.
*/
var sortColors = function(nums) {
let count = new Array(3).fill(0);
let res = []
nums.forEach((n) => {
count[n]++;
});
count[1] += count[0];
count[2] += count[1];
for(let i = nums.length - 1; i>= 0; i--) {
let c = count[nums[i]]--;
res[c - 1] = nums[i];
}
res.forEach((r, i) => {
nums[i] = r;
})
};

基数排序

假设我们有 10 万个手机号码,希望将这 10 万个手机号码从小到大排序,你有什么比较快速的排序方法呢?

我们之前讲的快排,时间复杂度可以做到 O(nlogn),还有更高效的排序算法吗?桶排序、计数排序能派上用场吗?手机号码有 11 位,范围太大,显然不适合用这两种排序算法。针对这个排序问题,有没有时间复杂度是 O(n) 的算法呢?

现在我就来介绍一种新的排序算法,基数排序。刚刚这个问题里有这样的规律:假设要比较两个手机号码 a,b 的大小,如果在前面几位中,a 手机号码已经比 b 手机号码大了,那后面的几位就不用看了。借助稳定排序算法,这里有一个巧妙的实现思路。还记得我们第 11 节中,在阐述排序算法的稳定性的时候举的订单的例子吗?我们这里也可以借助相同的处理思路,先按照最后一位来排序手机号码,然后,再按照倒数第二位重新排序,以此类推,最后按照第一位重新排序。经过 11 次排序之后,手机号码就都有序了。