零基础学习机器学习(一)机器学习相关概念

什么是机器学习

这个问题其实不好回答,因为机器学习涵盖的内容太多了。机器学习之父 Arthur Samuel 对机器学习的定义是:在没有明确设置的情况下,使计算机具有学习能力的研究领域。国际机器学习大会的创始人之一 Tom Mitchell 对机器学习的定义是:计算机程序从经验 E 中学习,解决某一任务 T,进行某一性能度量 P,通过 P 测定在 T 上的表现因经验 E 而提高

这两个定义你看了之后可能瞬间就懵了,没关系,这里我用“人话”来和你解释一下。

现在,请你想象这样一个场景:你周日约了小李、老王打牌,小李先来了,老王没来。你想打电话叫老王过来。小李说:“你别打电话啦,昨天老王喜欢的球队皇马输球了,他的项目在上个礼拜也没成功上线,再加上他儿子期末考试不及格,他肯定没心情来。”这种情况下,你觉得老王会来吗?一般情况下,我们都会觉得老王大概率不会来了。

不过,你有想过我们是怎么得出这个结论的吗?实际上我们运用了“推理”。我们人类的大脑做这样的推理似乎是自然而然的事儿。但是,对于计算机来说,如果它也像小李那样有老王的“历史数据”,知道他看皇马,知道他的项目情况,知道他儿子的成绩,那计算机能推出这个结论吗?对于长期以来只能按照人类预设规则解决问题的机器来说,这可并不是件容易的事。

机器学习的厉害之处就在于,它能利用计算机的运算能力,从大量的数据中发现一个“函数”或“模型”,并通过它来模拟现实世界事物间的关系,从而实现预测、判断等目的。

这个过程的关键是建立一个合适的模型,并能主动地根据这个模型进行“推理”,而这个建模的过程就是机器的“学习”过程。

那么机器学习和我们传统的程序有什么区别呢?实际上,传统程序是程序员把已知的规则定义好后输入给机器的,而机器学习则从已知数据中,通过不断试错、自我优化、自身总结,归纳出规则来。下面这张图,直观地阐述了机器学习和传统程序的区别,你可以看一下。

虽然说我们希望机器最终能主动地去预测,但在此之前,机器具体选什么模型、如何训练、怎么调参,我们人类还是要在这个过程中给机器很多指导的.

不过,机器到底怎样建立新的模型呢?我们继续以刚才的场景为例,不过,现在我想请你从函数的角度想一想刚才发生了什么?

要预测老王的状况,我们就需要建立一个“预测老王会不会来”的函数,而“皇马输赢”、“项目情况”、“儿子成绩”都是输入到这个函数的自变量,我们设为 x1, x2, x3。这些自变量每一个发生变化,都会影响到函数的结果,也就是因变量 y。

在机器学习中,这些自变量,就叫做特征(feature),因变量 y 叫做标签(label)。而一批历史特征和一批历史标签的集合,就是机器学习的数据集。

理解了这些,我们就可以更加“精准”地定义机器是怎么“学习”的了,就是在已知数据集的基础上,通过反复的计算,选择最贴切的函数去描述数据集中自变量 x1, x2, x3, …, xn 和因变量 y 之间的因果关系。这个过程,就叫做机器学习的训练,也叫拟合。

基于这一点,我们可以说:传统程序是程序员来定义函数,而在机器学习中是机器训练出函数。

最初用来训练的数据集,就是训练数据集(training dataset)。当机器通过训练找到了一个函数,我们还需要验证和评估,也就是说,这时候我们要给机器另一批同类数据特征,看机器能不能用这个函数推出这批数据的标签。这一过程就是在验证模型是否能够被推广、泛化,而此时我们用到的数据集,就叫验证数据集(validation dataset)。

简单来说,在验证、评估的过程里,我们就是要验证这个函数到底好不好。如果这个函数通过了评估,那就可以在测试数据集(test dataset)上做最终的测试;如果通过不了,就需要继续找新的模型。

其实,机器学习不一定要有标签,具体我们可以分三种情况来看:

  • 训练数据集全部有标签,叫监督学习(supervised learning);
  • 训练数据集没有标签,叫做无监督学习(unsupervised learning);
  • 在训练数据集中,有的数据有标签,有的数据没有标签,我们叫做半监督学习(semi-supervised learning)。

上述过程简单来说,就是:机器学习是通过一组数据,从一个备选函数簇中找到一个最接近真实函数的的方法,我们选择函数的方法是不断从函数簇中选择一个,然后通过损失函数计算和真实数据之间的距离,然后通过学习算法不断缩小损失函数

机器学习三要素:

  • 备选函数簇
  • 学习算法
  • 损失函数

什么是监督学习

在监督学习中,我们需要重点关注的是监督学习问题的分类。你可能会想问,我为什么要知道它的分类?这是因为,明确要解决的问题是机器学习项目的第一步,也是非常重要的一步。如果我们不了解问题的类型,就无法选择合适的算法。、

根据标签的特点,监督学习可以被分为两类:回归问题和分类问题。

回归问题的标签是连续数值。比如,如果我们天天给老王的情绪从 1 到 100 打分,那要预测老王今天的情绪,这就是个回归问题。再比如说预测房价,股市,天气情况,这都是回归类型的问题。

分类问题的标签是离散性数值。比如,预测老王今天会不会来打牌,这就是个分类问题。而我们平时看到的鉴别高欺诈风险的客户、辅助诊断来访者是否患病、人脸识别等等,这些都属于分类问题的应用。

无监督学习和半监督学习

无监督学习就是为没有标签的数据而建的模型,目前它大多只应用在聚类、降维等有限的场景中,往往是作为数据预处理的一个子步骤显显身手。不过,由于聚类场景相对更加常见,在这门课中,我会用一个“为用户做分组画像”的项目,带你掌握无监督学习的应用。

而半监督学习,就是使用大量无标签数据和一部分有标签数据建模。这往往是因为获取数据标签的难度很高。半监督学习的原理、功能和流程与监督学习是很相似的,区别主要在于多了“伪标签的生成”环节,也就是给无标签的数据人工“贴标签”。

其实,还有很多现实问题既没法用监督学习来解决,也没法用无监督学习和半监督学习来解决。比如说你要设计一个机器人来陪你玩牌,怎么办?这个时候,就需要强化学习登场了。

强化学习

强化学习研究的目标是,智能体(agent)如何基于环境而做出行动反应,以取得最大化的累积奖励。这里的“智能体”,其实我们可以把它理解成一种机器学习模型。

强化学习和监督学习的差异在于:监督学习是从数据中学习,而强化学习是从环境给它的奖惩中学习。

强化学习智能体在调整策略的时候需要思路比较长远,它不一定每次都明确地选择最优动作,而是要在探索(未知领域)和利用(当前知识)之间找到平衡。它反复试错、不断收集反馈,收集可供自己学习的信号,每经过一个训练周期,都变得比原来强一点,经过亿万次的训练能变得非常强大。

什么是深度学习

其实,深度学习是一种使用深层神经网络算法的机器学习模型,也就是一种算法。这个算法可以应用在监督学习、半监督学习和无监督学习里,也可以应用在强化学习中。

虽说深度学习中用的算法叫神经网络算法,但是这个“神经网络”(Artificial Neural Network, ANN)和人脑中的神经网络没啥大的关联,它是数据结构和算法形成的机器学习模型。

我们知道,长期以来,图形图像、自然语言和文本的处理是计算机行业的难题,因为这类信息的数据集,并不是结构化的,需要人工根据信息的类型来选择特征进行提取,这样对于特征的提取是有限的,就拿图像来说,只能提取出一些简单的滤波器。

而深层神经网络的厉害之处在于,它能对非结构的数据集进行自动的复杂特征提取,完全不需要人工干预。也就是说,深度学习让这个曾经的“难题”一下子变得非常容易。

本文内容全部来自于对极客时间《零基础实战机器学习》的摘抄,完整内容请购买课程

在机器学习过程中,我们需要事先规定我们的备选函数簇,比如一次函数或者二次函数,如果函数簇规定错误,那么无论怎么学习都没用。

而深度学习最好的地方在于,它的函数簇是神经网络,可以无限逼近真实的函数,且它不需要我们事先指定函数簇。

比如,gpt的函数簇就是神经网络,它的损失函数就是和下一词的距离