Chrome与Node事件循环机制

用了这么久的JavaScript,才发现自己对JavaScript的事件循环机制一直有些误解。

第一,事件循环机制不是V8实现的,V8引擎只是负责JavaScript代码的编译,内存分配等。

第二,Chrome的事件循环机制是通过Web API实现的,Node则是libuv。

第三,Node11之前,Node的事件循环的原理与Chrome是不同的。

针对这几个误区,我又重新学习了一遍JavaScript的事件循环。

Javascript是一个单线程、非阻塞、异步、解释性脚本语言。js的并发模型基于事件循环,Event Loop是由js宿主环境,如浏览器实现的。v8是Chrome里的javascript运行环境,在V8的源码中并不存在setTimeout/DOM/HTTP请求等 ,这些异步请求在浏览器中由webAPI处理,它是由C++实现的浏览器创建的线程。

Chrome浏览器与Node11+

浏览器

以下是浏览器中事件循环机制的流程图,只要执行栈中没有代码在执行,微任务会在回调后立即执行。

Node11+

这部分的内容可以看我的另一篇博客:https://sunra.top/posts/5f68736a/

Node10-(以Node8为例)

1.Node简介

Node 中的 Event Loop 和浏览器中的是完全不相同的东西。Node.js采用V8作为js的解析引擎,而I/O处理方面使用了自己设计的libuv,libuv是一个基于事件驱动的跨平台抽象层,封装了不同操作系统一些底层特性,对外提供统一的API,事件循环机制也是它里面的实现(下文会详细介绍)。

img

Node.js的运行机制如下:

  • V8引擎解析JavaScript脚本。
  • 解析后的代码,调用Node API。
  • libuv库负责Node API的执行。它将不同的任务分配给不同的线程,形成一个Event Loop(事件循环),以异步的方式将任务的执行结果返回给V8引擎。
  • V8引擎再将结果返回给用户。

2.六个阶段

其中libuv引擎中的事件循环分为 6 个阶段,它们会按照顺序反复运行。每当进入某一个阶段的时候,都会从对应的回调队列中取出函数去执行。当队列为空或者执行的回调函数数量到达系统设定的阈值,就会进入下一阶段。

img

从上图中,大致看出node中的事件循环的顺序:

外部输入数据–>轮询阶段(poll)–>检查阶段(check)–>关闭事件回调阶段(close callback)–>定时器检测阶段(timer)–>I/O事件回调阶段(I/O callbacks)–>闲置阶段(idle, prepare)–>轮询阶段(按照该顺序反复运行)…

  • timers 阶段:这个阶段执行timer(setTimeout、setInterval)的回调
  • I/O callbacks 阶段:处理一些上一轮循环中的少数未执行的 I/O 回调
  • idle, prepare 阶段:仅node内部使用
  • poll 阶段:获取新的I/O事件, 适当的条件下node将阻塞在这里
  • check 阶段:执行 setImmediate() 的回调
  • close callbacks 阶段:执行 socket 的 close 事件回调

注意:上面六个阶段都不包括 process.nextTick()(下文会介绍)

接下去我们详细介绍timerspollcheck这3个阶段,因为日常开发中的绝大部分异步任务都是在这3个阶段处理的。

(1) timer

timers 阶段会执行 setTimeout 和 setInterval 回调,并且是由 poll 阶段控制的。 同样,在 Node 中定时器指定的时间也不是准确时间,只能是尽快执行

(2) poll

poll 是一个至关重要的阶段,这一阶段中,系统会做两件事情

1.回到 timer 阶段执行回调

2.执行 I/O 回调

并且在进入该阶段时如果没有设定了 timer 的话,会发生以下两件事情

  • 如果 poll 队列不为空,会遍历回调队列并同步执行,直到队列为空或者达到系统限制
  • 如果 poll 队列为空时,会有两件事发生
    • 如果有 setImmediate 回调需要执行,poll 阶段会停止并且进入到 check 阶段执行回调
    • 如果没有 setImmediate 回调需要执行,会等待回调被加入到队列中并立即执行回调,这里同样会有个超时时间设置防止一直等待下去

当然设定了 timer 的话且 poll 队列为空,则会判断是否有 timer 超时,如果有的话会回到 timer 阶段执行回调。

(3) check阶段

setImmediate()的回调会被加入check队列中,从event loop的阶段图可以知道,check阶段的执行顺序在poll阶段之后。 我们先来看个例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
console.log('start')
setTimeout(() => {
console.log('timer1')
Promise.resolve().then(function() {
console.log('promise1')
})
}, 0)
setTimeout(() => {
console.log('timer2')
Promise.resolve().then(function() {
console.log('promise2')
})
}, 0)
Promise.resolve().then(function() {
console.log('promise3')
})
console.log('end')
//start=>end=>promise3=>timer1=>timer2=>promise1=>promise2
复制代码
  • 一开始执行栈的同步任务(这属于宏任务)执行完毕后(依次打印出start end,并将2个timer依次放入timer队列),会先去执行微任务(这点跟浏览器端的一样),所以打印出promise3
  • 然后进入timers阶段,执行timer1的回调函数,打印timer1,并将promise.then回调放入microtask队列,同样的步骤执行timer2,打印timer2;这点跟浏览器端相差比较大,timers阶段有几个setTimeout/setInterval都会依次执行,并不像浏览器端,每执行一个宏任务后就去执行一个微任务(关于Node与浏览器的 Event Loop 差异,下文还会详细介绍)。

3.Micro-Task 与 Macro-Task

Node端事件循环中的异步队列也是这两种:macro(宏任务)队列和 micro(微任务)队列。

  • 常见的 macro-task 比如:setTimeout、setInterval、 setImmediate、script(整体代码)、 I/O 操作等。
  • 常见的 micro-task 比如: process.nextTick、new Promise().then(回调)等。

4.注意点

(1) setTimeout 和 setImmediate

二者非常相似,区别主要在于调用时机不同。

  • setImmediate 设计在poll阶段完成时执行,即check阶段;
  • setTimeout 设计在poll阶段为空闲时,且设定时间到达后执行,但它在timer阶段执行
1
2
3
4
5
6
7
setTimeout(function timeout () {
console.log('timeout');
},0);
setImmediate(function immediate () {
console.log('immediate');
});
复制代码
  • 对于以上代码来说,setTimeout 可能执行在前,也可能执行在后。
  • 首先 setTimeout(fn, 0) === setTimeout(fn, 1),这是由源码决定的 进入事件循环也是需要成本的,如果在准备时候花费了大于 1ms 的时间,那么在 timer 阶段就会直接执行 setTimeout 回调
  • 如果准备时间花费小于 1ms,那么就是 setImmediate 回调先执行了

但当二者在异步i/o callback内部调用时,总是先执行setImmediate,再执行setTimeout

1
2
3
4
5
6
7
8
9
10
11
12
const fs = require('fs')
fs.readFile(__filename, () => {
setTimeout(() => {
console.log('timeout');
}, 0)
setImmediate(() => {
console.log('immediate')
})
})
// immediate
// timeout
复制代码

在上述代码中,setImmediate 永远先执行。因为两个代码写在 IO 回调中,IO 回调是在 poll 阶段执行,当回调执行完毕后队列为空,发现存在 setImmediate 回调,所以就直接跳转到 check 阶段去执行回调了。

(2) process.nextTick

这个函数其实是独立于 Event Loop 之外的,它有一个自己的队列,当每个阶段完成后,如果存在 nextTick 队列,就会清空队列中的所有回调函数,并且优先于其他 microtask 执行。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
setTimeout(() => {
console.log('timer1')
Promise.resolve().then(function() {
console.log('promise1')
})
}, 0)
process.nextTick(() => {
console.log('nextTick')
process.nextTick(() => {
console.log('nextTick')
process.nextTick(() => {
console.log('nextTick')
process.nextTick(() => {
console.log('nextTick')
})
})
})
})
// nextTick=>nextTick=>nextTick=>nextTick=>timer1=>promise1

5.与浏览器比较

1
2
3
4
5
6
7
8
9
10
11
12
13
setTimeout(()=>{
console.log('timer1')
Promise.resolve().then(function() {
console.log('promise1')
})
}, 0)
setTimeout(()=>{
console.log('timer2')
Promise.resolve().then(function() {
console.log('promise2')
})
}, 0)

浏览器端运行结果:timer1=>promise1=>timer2=>promise2

Node端运行结果分两种情况:

  • 如果是node11版本一旦执行一个阶段里的一个宏任务(setTimeout,setInterval和setImmediate)就立刻执行微任务队列,这就跟浏览器端运行一致,最后的结果为timer1=>promise1=>timer2=>promise2
  • 如果是node10及其之前版本:要看第一个定时器执行完,第二个定时器是否在完成队列中。
    • 如果是第二个定时器还未在完成队列中,最后的结果为timer1=>promise1=>timer2=>promise2
    • 如果是第二个定时器已经在完成队列中,则最后的结果为timer1=>timer2=>promise1=>promise2(下文过程解释基于这种情况下)

参考链接:

https://www.jianshu.com/p/054cb77adadd

https://juejin.cn/post/6844903761949753352

https://nodejs.org/zh-cn/docs/guides/event-loop-timers-and-nexttick/#what-is-the-event-loop